The Upper Bounds of Graceful Rainbow Injection Arising from Combinatorial Nullstelensatz

R.Y Wulandari¹ R. Simanjuntak² S.W Saputro²

¹DoctoralProgram Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jl.Ganesha 10 Bandung 40132 Indonesia ²CombinatorialMathematicsResearchGroup Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jl.Ganesha 10 Bandung 40132 Indonesia

For a simple graph G, a graceful antimagic injection g in [1, M] is a map $g: V(G) \to [1, M]$ such that the edge labels are different for all distinct edges and the vertex weights are different for all distinct vertices, where the edge label of uv is f(uv) = |g(u) - g(v)| and the vertex weight of v is $\omega(v) = \sum_{uv \in E(G)} f(uv)$. If Y is a class of graphs of order n, not containing $\bigcup K_2$, GA(Y, n) denotes the smallest integer M such that G admits a graceful antimagic injection on [1, M]. If M = |V(G)|, then G is called a graceful antimagic graph.

For $G_{\Delta} \subset Y$ a class of graphs with maximum degree Δ , we utilize Alon's Combinatorial Nullstelensatz to find an upper bound for $GA(G_{\Delta}, n)$, that is $GA(G_{\Delta}, n) \leq n + p(m-p) + \Delta(2n-5)$, where $p = \min\{\Delta, \lfloor \frac{n}{2} \rfloor\}$. We also prove that if $T_k \subset Y$ is a class of trees with k leaves, then $GA(T_k, n) \leq 3n - 3k$. In particular, a tree in T_k with $k = \frac{2n}{3}$ is graceful antimagic.

In this talk, we also introduce a variation of the previous notion of injection, that is the graceful \mathbb{D} -antimagic injection. Let \mathbb{D} be a nonempty subset of the set $\{0, 1, \ldots, diam(G)\}$ and the \mathbb{D} -neighbourhood of vertex $v, N_{\mathbb{D}}(v)$, be the set of all vertices u that $d(u, v) \in \mathbb{D}$. A graceful \mathbb{D} -antimagic injection g in [1, N] is a map $g: V(G) \to [1, N]$ such that all the edge labels are distinct and all the \mathbb{D} -vertex weights are also distinct, where the \mathbb{D} -vertex weight of v is a sum of the labels of vertices in $N_{\mathbb{D}}(v)$. If X is a class of graph of order n with no two vertices with the same \mathbb{D} -neighbourhood, the smallest possible N such that every graph in X has a graceful \mathbb{D} -antimagic injection is denoted by $G\mathbb{D}A(X, n)$. If N = |V(G)| then G is called a graceful \mathbb{D} -antimagic graph.

Let \mathbb{D} -degree of a vertex v be the cardinality of $N_{\mathbb{D}}(v)$. For $G_{\Delta_{\mathbb{D}}} \subset X$ a class of graphs with maximum D-degree $\Delta_{\mathbb{D}}$, we prove that $G\mathbb{D}A(X,n) \leq n + t(n-t) + p(m-p) - 1$, where $t = \min\{\lfloor \frac{n}{2} \rfloor, \Delta_{\mathbb{D}}\}$ and $p = \min\{\lfloor \frac{m}{2} \rfloor, \Delta\}$. If $T_k \subset X$ is a class of trees with k leaves, then $G\mathbb{D}A(T_k, n) \leq 4n - 4k$. In particular, a tree with $k = \frac{3n}{4}$ is graceful $\{1\}$ -antimagic.

Keywords: graceful $\mathbb D\text{-}antimagic,$ graceful antimagic, injection, combinatorial nullstelensatz

rismayulina2107@gmail.com rino@itb.ac.id suhadi@itb.ac.id