Distinguishing arc-colorings of symmetric digraphs

Magdalena Prorok

AGH University of Krakow

A symmetric digraph \overleftrightarrow{G} is obtained from a simple graph G by replacing each edge uv with a pair of opposite arcs \overrightarrow{uv} , \overrightarrow{vu} . An arc-coloring c of a digraph \overleftrightarrow{G} is distinguishing if the only automorphism of \overleftrightarrow{G} preserving the coloring c is the identity. A definition of proper arc-coloring of a digraph depends on a definition of adjacency of arcs. There are 15 possible definitions of a proper arc-coloring of a digraph since there are 15 possible definitions of adjacency of two arcs. For each type, we investigate the (distinguishing) chromatic index of \overleftrightarrow{G} , i.e. the smallest number of colors in a (distinguishing) proper coloring of \overleftrightarrow{G} . Colorings of arcs of a symmetric digraph \overleftarrow{G} are equivalent to colorings of halfedges of the graph G, which have applications in computer science.

This is joint work with Rafał Kalinowski and Monika Pilśniak.

References

- R. Kalinowski, M. Pilśniak, Proper distinguishing arc-colourings of symmetric digraphs, Appl. Math. Comput. 421 (2022) 126939.
- [2] R. Kalinowski, M. Pilśniak, M. Prorok, Distinguishing arc-colourings of symmetric digraphs, The Art of Discrete and Applied Mathematics 6 (2023) #2.04.
- [3] R. Kalinowski, M. Pilśniak, M. Prorok, Distinguishing symmetric digraphs by proper arc-colourings of type I, manuscript.
- [4] S. Poljak, V. Rödl, On the Arc-Chromatic Number of a Digraph, J. Combin. Theory Ser. B 31 (1981), 190–198.
- [5] D. West, Introduction to Graph Theory, Prentice Hall N. J., 2001.

prorok@agh.edu.pl