$\Gamma\mbox{-supermagic}$ labeling of some 4-regular graphs

Dalibor Froncek

Department of Mathematics and Statistics, University of Minnesota Duluth, USA, and Combinatorica o.p.s., Czechia

Let G = (V, E) be a simple finite undirected graph with p vertices and q edges, and let Γ be a group of order q.

A bijection $f: \Gamma \to E$ is called a Γ -supermagic labeling of G if for every vertex x there exists an ordering of the edges incident with x such that the product of the edge labels (called the *weight* of the vertex) is the same element of Γ . In other words, for a vertex $x \in G$, we define its weight as

$$w(x) = \prod_{xy \in E} f(xy)$$

and say that f is a Γ -supermagic labeling if there exists $\mu \in \Gamma$ such that for every $x \in G$ there is an ordering of the edges incident with x giving

$$w(x) = \mu$$
.

A graph G admitting a Γ -supermagic labeling is then called a Γ -supermagic graph. The labeling is also sometimes called a vertex-magic edge Γ -labeling.

So far, in all results on Γ -supermagic labeling we are aware of the group Γ is Abelian. We present a labeling of products of two cycles and some other graphs with the dihedral group D_n .

dalibor@d.umn.edu